
SAM: Database Generation fromQuery Workloads with
Supervised Autoregressive Models

Jingyi Yang
1
*, Peizhi Wu

2
*, Gao Cong

1
, Tieying Zhang

3
, Xiao He

4

1
Nanyang Technological University

2
University of Pennsylvania

3
ByteDance Inc.

4
Alibaba Group

{jyang028@e.,gaocong@}ntu.edu.sg,pagewu@cis.upenn.edu

tieying.zhang@bytedance.com,xiao.hx@alibaba-inc.com

ABSTRACT
With the prevalence of cloud databases, database users are increas-

ingly reliant on the cloud database providers to manage their data.

It becomes a challenge for cloud providers to benchmark different

DBMS for a specific database instance without having access to

the underlying data. One viable solution is to leverage a query

workload, which contains a set of queries and the corresponding

cardinalities, to generate a synthetic database with similar query

performance. Existing methods for database generation with car-

dinality constraints, however, can only handle very small query

workloads due to their high complexity and encounter challenges

when handling join queries.

In this work, we propose SAM, a supervised deep autoregressive

model-basedmethod for database generation from query workloads.

First, SAM is able to process large-scale query workloads efficiently

as its complexity is linear in the size of the query workload, the

number of attributes and the attribute domain size. Second, we

develop algorithms to obtain unbiased samples of base relations

from the deep autoregressive model and assign join keys in a way

that accurately recovers the full outer join of the target database.

Comprehensive experiments on real-world datasets demonstrate

that SAM is able to efficiently generate a high-fidelity database that

not only satisfies the input cardinality constraints, but also is close

to the target database.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Theory of
computation→ Database constraints theory; • Information
systems → Database management system engines.
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1 INTRODUCTION
As cloud computing becomes prevalent, databases are also migrat-

ing to the cloud, providing scalability and reduced administrative

burden for database users. Therefore, nowadays, an increasing num-

ber of individuals and enterprises use databases managed by cloud

providers rather than having them on-premise. Before a user mi-

grates the databases from local to cloud storage or from one cloud

provider to another, the cloud provider may wish to recommend

a DBMS product to the user based on the benchmark results of

different DBMS on the user’s databases and workloads.

Benchmarking requires access to the users’ databases, which are

not granted to the cloud provider before the actual migration. On

the other hand, cloud providers may have access to the users’ query

workloads, which contain the queries and the result cardinalities,

since query workloads have lower security level than the data. The

queryworkloads can be considered as a set of cardinality constraints

specifying the data characteristics of the underlying database [4].

Therefore, one natural idea to address the aforementioned issues is

to leverage the query workloads to generate a database that satisfies

the cardinality constraints as a fundamental to replay workloads [1].

Benchmarking can then be conducted on the generated database,

which is an approximate of the original database.

Another typical use case of database generation is stress testing

for databases with strict access controls. For enterprise database

users like e-commerce and social media platforms, their engineers

need to stress test the databases to ensure production stability un-

der high traffic. However, replicating the entire database for stress

testing is highly restricted for databases with a high security level

and strict access control constraints, e.g., core user database of a
social network/e-commerce platform. Again, one can first query the

target database and obtain the result cardinalities of a query work-

load, and generate a synthetic database from the query workload

for the purpose of stress testing.

Existing work [4] on database generation with cardinality con-

straints uses Probabilistic Graphical Model (PGM) to construct a

generative distribution of the database, which can then be sampled

from to generate a synthetic database. Since query workloads are

often of a large scale, it becomes possible to accurately model the

joint distribution of a database by processing a large number of

cardinality constraints. However, PGM-based approaches [4] have

a complexity that scales quickly with regard to the number of cor-

related attributes and attribute domain size, both of which increase

as the number of query constraints increases. In our experiments,

it is only able to handle a small number of cardinality constraints
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for a single relation within a reasonable time frame (e.g., 12 hours).
Furthermore, it is even more challenging for PGM-based methods

to handle multiple relations: they need to build separate models

for queries involving different subsets of relations. As the models

are built from disjoint sets of query constraints, there may exist

inconsistencies across different models, reducing the fidelity of

generated data for multi-relation databases. Detailed discussions of

PGM-based methods can be found in Section 2.3.

To empower the possibility of processing query workloads of

different scales while eliminating inconsistencies in the modeling

of data distribution, we consider a new class of models for data-

base generation – deep autoregressive models [12, 27]. Inspired by

the recent advances in deep autoregressive models for cardinality

estimation [34–36], we propose a Supervised deep Autoregressive
Model-based method for database generation — SAM. SAM first

trains a single autoregressive model of the joint data distribution

of the entire database from a query workload. The training process

scales linearly with regard to the size of the input query workload

and can be greatly accelerated with GPUs. With an autoregressive

model of the joint data distribution, it is straightforward to generate

a database instance of a single-relation. However, for multi-relation

databases, it remains a huge challenge to generate the base relations

from the deep autoregressive model, which will be discussed in

Section 4.3. To address this, we further propose inverse probability
weighting and scaling algorithms to obtain unbiased base relation

samples from full outer join samples, and a novel Group-and-Merge
algorithms to assign join keys to the generated relations so that they

can better recover the full outer join, achieving high data fidelity.

Contributions This work makes the following contributions

• We design and implement SAM, a query-aware database

generator based on autoregressive models. Unlike previous

methods [4] with a high time complexity, SAM has a linear

complexity with regard to the size of the query workload

and is therefore capable of processing query workloads of a

much larger scale, i.e., 250×, within a fixed time frame. To the

best of our knowledge, this is the first model that is able to

generate databases satisfying a large number of cardinality

constraints.

• SAM uses a single autoregressive model to handle single-

relation, multi-relation and join queries, so that the modeled

data distribution is consistent with all queries. We propose

inverse probability weighting and scaling to efficiently sample

from the single autoregressive model, and produce unbiased

samples for each base relation.

• We propose a novel Group-and-Merge algorithm to assign

join key to the generated base relations so that SAM is capa-

ble of recovering the full outer join of the target database.

• We conduct comprehensive experiments to show that SAM
significantly outperforms the previous approach [4] in terms

of data fidelity, database recovery, and efficiency.

2 PRELIMINARIES
In this section, we first define relevant notations in Section 2.1

and then define the problem of Database Generation from Query
Workloads in Section 2.2. We discuss major previous work on this

problem and its shortcomings in Section 2.3.

2.1 Notations
Consider a relation𝑇 that has𝑛 columns (or attributes) {𝐴1, 𝐴2, ..., 𝐴𝑛}.
The size of𝑇 is given by |𝑇 |. A databaseDB consists of a collection

of relations {𝑇1,𝑇2, ...,𝑇𝑙 }.
A query 𝑞 over the database DB is a conjunction of predicates,

each of which indicates a constraint on an attribute (e.g., 𝐴2<3).

The cardinality of a query 𝑞, 𝐶𝑎𝑟𝑑 (𝑞), is the number of tuples

satisfying the query. Another related concept is selectivity, denoted

by 𝑆𝑒𝑙 (𝑞) = 𝐶𝑎𝑟𝑑 (𝑞)/|𝑇 |, i.e., 𝐶𝑎𝑟𝑑 (𝑞) normalized by the table size

(or the size of full outer join for join queries).

2.2 Problem Formulation
We formally introduce the problem:

Problem: Data Generation from Query Workloads. Consider a
set of𝑛 queriesQ = {𝑞𝑖 }𝑛𝑖=1 and their cardinalitiesK = {𝐶𝑎𝑟𝑑 (𝑞𝑖 )}𝑛𝑖=1
collected on the database DB, where 𝑛 can be large. We aim to gen-
erate a database that satisfies the cardinalities of the collected queries
(i.e., high fidelity to input cardinality constraints). We also expect the
generated database to be close to the original database.
This problem formulation follows the definition of Data Generation
Problem (DGP) in previous work [4], which proves that this problem
is NEXP-complete, and we can only design approximate algorithms.

Moreover, we extend the target to recover the original database.

This cannot be handled by [4], which will be explained later.

We use the cross entropy between the discrete data distributions

of the generated relation 𝑇 and the original relation 𝑇 to measure

the similarity of two databases.

𝐻 (𝑇,𝑇 ) = −Ex∼𝑇 [log 𝑆𝑒𝑙 (x)] (1)

where 𝑆𝑒𝑙 (·) denotes the selectivity of tuple x in the generated

relation 𝑇 .

Supported Queries and Join Schema. Our model supports learn-

ing from queries with conjunctions of predicates. We support range

constraint, equality constraint or IN clause on a numerical or cate-

gorical column. Additionally, disjunctions can be supported using

the inclusion-exclusion principle. For joins, we support foreign

key joins. We also support multi-way and multi-key equi-joins.

Following previous work on database generation and cardinality

estimation [4, 14, 35], we also make a fairly natural assumption

that all query constraints only have selection predicates on content

columns (or value attributes), i.e., no join key columns are filtered.

Moreover, unlike PGM-based methods [4] which merely support

snowflake schema (tree structure with parent FK joining child PK),

we only require the joins to be foreign key join with an acyclic

schema (i.e., a tree). We leave the support of cyclic joins to fu-

ture work as the current autoregressive model architecture we use

(which will be introduced later) only supports acyclic join schemas.

Despite this, our method can support many practical workloads

that are commonly used in large-scale cloud database scenarios as

shown in Section 5.

Join Graph.We define the join graph of a join schema as follows.

𝐺 𝑗𝑜𝑖𝑛 is a tree-structured directed acyclic graph where the vertices

V correspond to the relations T in the join schema. There exists a

directed edge 𝐸 from the vertex 𝑇1 to the vertex 𝑇2 if the primary

key of relation 𝑇1 joins with the foreign key of relation 𝑇2.



2.3 Why not PGM
In this section, we briefly describe how PGM-based methods [4]

for database generation work, and discuss the limitations of the

methods, which our work aims to address.

How PGM-basedMethodsWork. PGM-based methods construct

a Markov network𝐺 = (V, E) to represent the joint distribution of

the attributes, where the verticesV correspond to the random vari-

ablesX associated with each attribute, and an edge (𝑋𝑖 , 𝑋 𝑗 ) exists if
attributes𝐴𝑖 and𝐴 𝑗 are filtered together in a cardinality constraint.

It proposes algorithms based on Chordal graphs/Markov Blankets

to factorize the joint distribution into marginal distributions, and

solves a system of linear equations to obtain the marginal distribu-

tions. For multi-relation databases, it builds a separate PGM model

for each view (including base relations) existing in the cardinality

constraints, and then derives base relations from the generated

views.

Limitation 1: Potentially InaccurateDataModeling. For tractabil-
ity, PGM-based methods make independence assumptions between

attributes. Thismay not hold for complex real-world datasets, which

potentially leads to inaccurate data distribution modeling.

Limitation 2: Poor Scalability. The most computationally expen-

sive part of PGM-based methods is solving the system of linear

equations for the marginal distributions. The number of variables

in the system is O(𝑙𝐷𝛾 ), where 𝑙 is the number of maximal cliques,

and𝐷 is the domain size. Here, 𝛾 can reach the number of attributes

in the worst case. 𝐷 also scales linearly with regard to the number

of queries 𝑛, until it reaches the actual domain size. In this case, the

complexity of PGM is prohibitively expensive. This is confirmed in

our experiments (Section 5) where it takes more than 12 hours to

process 13 queries on the Census dataset. Therefore, PGM-based

methods scale poorly with regard to the number of queries 𝑛, which

may be large for real-world query workloads.

Limitation 3: Low Fidelity on Join Queries. The view genera-

tion procedure may result in violation of the containment property

across generated views and relations because different views or

relations consider disjoint sets of queries, e.g., a value of relation𝑇2
in the generated join view (𝑇1,𝑇2) does not appear in the generated

relation 𝑇2. This would result in low fidelity of the generated data-

base, i.e., large error of input query cardinalities on the generated

database.

3 OVERVIEW OF SAM
In this section, we first summarize several goals of the work and

the corresponding solutions SAM uses to achieve the goals. Next,

we present the high-level workflow of SAM.

3.1 Goals and Solutions
1. Goal: Training an accurate generative model from cardi-

nality constraints. The first desiderata would be accurately

modeling the data distribution from cardinality constraints. As

explained earlier, the previous work [4] is not able to meet this

goal since it makes independence assumptions on the data distri-

bution. Moreover, the model must be generative so that we can

efficiently sample tuples from the model.

Solution. A recent advance in ML for cardinality estimation [34]

proposes a unified deep autoregressive (AR) model — UAE, which

models the data distribution from both data and query work-

loads without any independence assumptions. The query-driven

variant of UAE, UAE-Q, is a deep AR model trained on cardinal-

ity constraints, which perfectly fits this goal. Note that this can

address the Limitation 1 of PGM.

2. Goal: Efficient processing of large-scale query workloads.
The previous work [4] can only process a small number of query

constrains, but a real-world query workload may contain a large

number of queries comprising multiple predicates with varying

values on different attributes.

Solution. This can be naturally achieved by our solution to

Goal 1. This is because of 1) the batch training of deep AR mod-

els; 2) the acceleration of modern GPUs; 3) more importantly,

the training complexity being linear in the number of collected

queries, the number of attributes and the attribute domain size.

Note that this can address the Limitation 2 of PGM.

3. Goal: Effective and efficient generation of multiple base
relations from an AR model. With an AR model, we are able

to uniformly sample full outer join tuples. However, uniform

full outer join samples are biased for base relations due to the

potential fanout effect, which is the phenomenon that join opera-

tions fan-out tuples from base relations, and a base relation tuple

can appear multiple times in the full outer join result. This may

cause the inconsistency between the marginal data distribution

of base relation tuples in the full outer join and the original data

distribution of the base relation tuples. Details can be found in

Section 4.3. Therefore, we need to adjust the sampling process to

produce unbiased samples for each base relation. Moreover, in a

real-world database like IMDB, even the size of full outer join on

a simple join schema containing 6 relations is 2 · 1012, making

it impractical to sample the entire set of full outer join tuples

from the model. This requires us to design efficient sampling

algorithms to generate the database.

Solution. We use the inverse probability weighting [15, 24] tech-

nique to address the sampling bias. Specifically, for a full outer

join sample, we adjust the weight of each base relation tuple

according to the values of the fanout columns [14, 35]. However,

it requires sampling the entire full outer join result to generate

all base relations, which is infeasible as explained before. To over-

come this, we sample a small fraction of full outer join result, and

scale the sampled tuples to the actual size of the base relations.

Our experimental results show that our solution can generate

a database that maintains the data distributions of the original

database by sampling only 1/20, 000 of the full outer join tuples.

4. Goal: Assigning join keys to generated relations with high
fidelity. It depends on assigning the right join keys to the gen-

erated tuples of multiple base relations to maintain the data

correlation across relations. A high fidelity database is generated

only when both intra-relation data correlations and inter-relation

data correlations are well captured.

Solution. Based on the sampling mechanism of AR models, we

design a novel Group-and-Merge algorithm for join key assign-

ment. We identify sets of full outer join tuples that possibly share

the same join key through identifier column values. We greedily

merge tuple sets with the same identifier columns values and
assign a unique key to them. Details can be found in Section 4.3.



Figure 1: Workflow of SAM.

Our approach to join key assignment helps the generated data-

base to achieve 700× less error of input query cardinalities at tail

compared to PGM-based methods [4]. Note that this can address

the Limitation 3 of PGM.

3.2 Workflow of SAM
Figure 1 shows the high-level workflow of SAM. SAM consists

of two stages — learning stage and generation stage. During the

learning stage, batches of (query, cardinality) pairs (or query con-

straints) are collected from the log of the query workload. SAM
learns the joint data distribution of the original database from the

query constraints, using differentiable progressive sampling [34].

SAM can efficiently process a large-scale query workload, i.e., 100K
query constraints, within 48 hours.

During generation, SAM first samples full outer join tuples from

the trained model, which can be done very efficiently on a GPU

through batching. We then use inverse probability weighting to

produce unbiased samples for each base relation, and assign join

keys using the developed Group-and-Merge algorithm.

4 METHODOLOGIES
In this section, we first walk through the techniques used to build

SAM — query-driven deep AR data modeling (Section 4.1). We then

discuss how to use the constructed SAM to generate a database

containing a single relation (Section 4.2), and a database containing

multiple relations (Section 4.3).

4.1 Constructing SAM from Query Workload
Autoregressive Decomposition of Tabular Data Distribution.
For a relation 𝑇 and a set of attributes 𝐴1, ..., 𝐴𝑛 , the joint data

distribution of 𝑇 is given by:

𝑃 (𝑥1, ..., 𝑥𝑛) = 𝑓 (𝑥1, ..., 𝑥𝑛)/|𝑇 | (2)

where 𝑓 (·) denotes the number of occurrences of a tuple. As it is

hard to directly store the joint distribution 𝑃 (·) due to the huge

domain space 𝐴1 × ... × 𝐴𝑛 , factorization can be used to approxi-

mate the joint probability distribution with the product of a set of

marginal and conditional probability distributions. While most fac-

torization methods [13, 17, 31] make independence assumptions on

the underlying data, the AR decomposition of the joint distribution

factors 𝑃 (·) without making any independence assumption. It thus

considers the correlations among all attributes and is given by:

𝑃 (𝑥1, ..., 𝑥𝑛) =
𝑛∏
𝑖=1

𝑃 (𝑥𝑖 |𝑥1, ..., 𝑥𝑖−1) . (3)

Model Architectures. As shown in Figure 2, the input to the deep

AR model of SAM is the range query 𝑃\ (∧{𝑋𝑖 ∈ 𝑅𝑖 }), and the

Figure 2: Constructing SAM from Query Workload. We tem-
porarily use 𝑦 to denote cardinality for simplicity.

ultimate output is its corresponding cardinality estimate. Note that

the intermediate output of the deep AR model is the conditional

probability distributions {𝑃\ (𝑋𝑖 |x<𝑖 )} for the i-th column given a

data point x, where \ is the model weights. To efficiently compute

the ultimate cardinality result, we resort to sampling techniques

to select a few data points to estimate. To this end, progressive

sampling [36], which sequentially samples in-region values from

the predicted distributions {𝑃\ (𝑋𝑖 |x<𝑖 )} where 𝑋𝑖 ∈ 𝑅𝑖 , has shown

to be robust to skewed data distribution. In addition, SAM can be

instantiated by any learning-based AR architecture (e.g.,MADE [12]

and Transformer [32] ).

Model Training. The original progressive sampling [36] method

can only be used for query cardinality inference, but not for training

from query cardinality constraints. This is because the categori-

cally sampled variables x𝑖 from {𝑃\ (𝑋𝑖 |x<𝑖 )} are non-differentiable,
which prevents the gradient flows during backpropagation. To en-

able training the deep AR model from query cardinality constraints,

SAM uses Differentiable Progressive Sampling (DPS) [34], which ap-

plies the Gumbel-Softmax trick to Progressive Sampling. By making

the sampled variables x𝑖 differentiable with the Gumbel-Softmax

trick, DPS enables gradients to flow through the categorically sam-

pled variables, so that the AR model can be trained to minimize

the discrepancy between the true and the estimated cardinalities.

Figure 2 illustrates how DPS is done on a deep autoregressive model

with three variables: the AR model first output 𝑃\ (𝑋1), and x1 is
sampled from 𝑃\ (𝑋1 ∈ 𝑅1) using Gumbel-Softmax. We then feed

the sampled x1 into the AR model to predict the conditional prob-

ability 𝑃\ (𝑋2 |x1) and sample x2 from 𝑃\ (𝑋2 ∈ 𝑅2 |x1). Similarly,

we can obtain 𝑃\ (𝑋3 |x<3) and sample x3. After obtaining all con-
ditional probabilities, the predicted cardinality from the sample

is given by |𝑇 | ·∏3

𝑖=1 𝑃\ (𝑋𝑖 ∈ 𝑅𝑖 |x<𝑖 ). We can then calculate the

Q-Error between the predicted cardinality and the actual cardinal-

ity, and perform backpropagation to calculate the gradient of the

prediction error with regard to the model parameters, which can

be used to update the model.

Join Handling. Following the previous work on deep AR models

for tabular data modeling [35], SAM learns the correlations across

all tables in a database using a single deep AR model of the full

outer join. The reason for using full outer join instead of other join

types is that full outer join encodes information of all tuples in the

joint distribution, especially when some of the primary key relation

tuples do not join with any foreign key relation tuple. SAM appends

two types of virtual columns (i.e., indicator and fanout columns) to

the original content columns, and learns these columns altogether.

One fanout column F𝑇 .key is added for each foreign key 𝑇 .key,

which is defined as the number of times each value appears in

𝑇 .key. For example, in Figure 3 (b), the fanout column F𝐶.x is 2 in



the first tuple, because the foreign key 𝐶.x = 1 appears twice. One

indicator column I𝑇 is also added for each foreign key relation 𝑇 ,

which takes on a binary value — 1 indicates relation 𝑇 is present in

the full outer join tuple, and 0 indicates otherwise. During query

inference, SAM uses fanout scaling [35] in progressive sampling to

eliminate potential fanout effects. We choose to build the single AR

model for join handling as it is compatible with the DPS algorithm,

and thus we can train the AR model from join queries as we do for

single-relation queries.

4.2 Single Relation Generation
Once trained from the query workload, SAM is ready for database

generation. We proceed to introduce the algorithm for generating

a single-relation database using SAM.

For a single relation, SAM models the joint data distribution of

all attributes in an autoregressive manner. Therefore, we can obtain

uniform samples of the relation tuples by sequentially sampling

the value for each attribute from the AR model. The target relation

𝑇 is generated by sampling |𝑇 | tuples.
Algorithm 1 presents the sampling algorithm for the case of a

single table. To uniformly sample a tuple from the AR model, we

first initialize an all-zero vector (line 3). We then sample the value of

each attribute in a sequential way (line 4–7). For each attribute, we

pass the previously sampled values to the AR model (line 5), sample

the attribute value from the conditional probability distribution

(line 6), and update the vector (line 7). By repeating the sampling

procedure for |𝑇 | times (line 2), we generate relation 𝑇 .

Algorithm 1 Generating a Single Table with SAM

Input: Model predicted conditional probability distributions

{𝑃\ (𝑋𝑖 |x<𝑖 )}; Table size |𝑇 |.
Output: Generated table 𝑇 .

1: 𝑇 = {}; # Initialize 𝑇 with an empty table
2: for 𝑠 = 1 to |𝑇 | do # Embarrassingly parallel
3: z = 0𝑛 ; # Initialize the 𝑠-th sample
4: for 𝑖 = 1 to 𝑛 do
5: Forward pass and obtain 𝑃\ (Zi |z<𝑖 );
6: Sample 𝑧𝑖 ∼ 𝑃\ (Zi |z<𝑖 );
7: z[𝑖] = 𝑧𝑖 ; # Assign the sampled 𝑧𝑖 to z
8: Append z to 𝑇 ;
9: return 𝑇

Note that the sampling process is embarrassingly parallel. Hence,
in practice the sampling can be batched on a GPU and we can also

launch multiple sampling threads on different GPUs, making the

sampling process remarkably efficient.

4.3 Multiple Relation Generation
For a database containing multiple relations, we cannot generate

the database by directly sampling from the AR model due to the

following two challenges that need to be solved.

1. Unbiased Sampling of base relation tuples. In the case of multiple

relations, SAM uses a single AR model to learn the joint distribu-

tion of the full outer join. Direct sampling from the AR model only
produces uniform samples of the full outer join, rather than uni-

form samples of each base relation. Due to the potential fanout

effect, the marginal data distribution of a base relation may no

longer be maintained in the full outer join. As a result, we need

a way to obtain unbiased samples of each base relation.

2. Join key assignment. For a database containing multiple relations,

the relations contain join key columns, which specifies the data

correlation across relations. However, join key columns are not

modeled by the AR model, thus its value cannot be sampled. We

need to assign join keys during the generation process in a way

that maintains the inter-relation data correlations.

We proceed to present the algorithm to obtain unbiased samples

of the base relations from the AR model (Section 4.3.1). We then

discuss the algorithm to assign join keys, which maintains the

inter-relation data correlations (Section 4.3.2).

4.3.1 Unbiased Sampling of base relation tuples. Although
SAM only models the joint distribution of the full outer join, we

notice that the joint distribution of the full outer join (including

fanout and indicator columns) carry information on the data distri-

bution of each base relation. Specifically, each full outer join tuple

contains the values for all base relation attributes, and the fanout

column values provide information on the number of times each

of the involved base relation tuple has been fanned out during the

full outer join.

For a base relation, if we only consider the attributes of that base

relation in the full outer join, then the full outer join is a pseudo-

population of the base relation (target population) where the num-

ber of occurrences of each tuple is multiplied by the corresponding

fanout factor. Because the full outer join is a pseudo-population

for each base relation, uniform samples from the full outer join are

biased samples for the base relations tuples. To illustrate this, we

refer to Figure 3 (a). Both the tuple (1,𝑚) and (2,𝑚) appear once in
the base relation𝐴, and thus 𝑃 ((1,𝑚)) = 𝑃 ((2,𝑚)) = 1/4. However,
in the full outer join of relation 𝐴, 𝐵 and 𝐶 shown in Figure 3 (b),

there are two tuples containing (1,𝑚) and four tuples containing

(2,𝑚) for relation A columns, i.e., 𝑃 ((1,𝑚)) = 1/4, 𝑃 ((2,𝑚)) = 1/2,
which is different from that in the base relation. This happens be-

cause tuple (1,𝑚) is fanned out twice when joining relation 𝐶 , but

tuple (2,𝑚) is fanned out twice when joining both 𝐵 and𝐶 , leading

to a total fanout of 2 × 2 = 4.

We propose to use Inverse Probability Weighting [15, 24], a well-

known statistics technique, to remove this sampling bias. Inverse

probabilityweighting is a general technique for calculating statistics

standardized to a pseudo-population different from that in which

the data was collected [29]. Given a full outer join sample x, we
derive a sample for each base relation, and we associate the derived

sample for base relation 𝑇 with a sample weightW𝑇 (x).

W𝑇 (x) =
1∏

𝑇 ′∉{𝑇 }∪𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑇 ) F𝑇 ′.key
(4)

W𝑇 (x) is the inverse of the fanout factor of the base relation 𝑇

tuple, i.e., the number of times the tuple is fanned out in the full

outer join. Fanout factor of a base relation𝑇 tuple can be calculated

by multiplying the fanout column value of all relations, excluding

relation 𝑇 and its ancestors in the join graph.

Example. The table in Figure 3 (c) shows 4 samples from SAM.

Without loss of generality, we focus on relation 𝐴 in the second

tuple, and we have W𝐴 = 1

F𝐵.𝑥×F𝐶.𝑥
. For this tuple, F𝐵.𝑥 = F𝐶.𝑥 =



𝐵.𝑥 𝐴.𝑥 𝐶.𝑥

𝐴.𝑥 𝐴.𝑎

1 m

2 m

3 n

4 n

𝐵.𝑥 𝐵.𝑏

1 a

2 b

2 c

𝐶.𝑥 𝐶.𝑐

1 i

1 i

2 j

2 j

(a) Base relations and join graph

𝐴.𝑥 𝐴.𝑎 F𝐵.𝑥 𝐵.𝑏 F𝐶.𝑥 𝐶.𝑐

1 m 1 a 2 i

1 m 1 a 2 i

2 m 2 b 2 j

2 m 2 b 2 j

2 m 2 c 2 j

2 m 2 c 2 j

3 n 1 ∅ 1 ∅
4 n 1 ∅ 1 ∅

(b) Full outer join.

Tuple 1 2 3 4

W𝑠
𝐴

1 0.5 0.5 2

𝐴.𝑎 F𝐵.𝑥 𝐵.𝑏 F𝐶.𝑥 𝐶.𝑐 I𝐵 I𝐶 W𝐴 W𝐵 W𝐶

m 1 a 2 i 1 1 0.5 0.5 1

m 2 b 2 j 1 1 0.25 0.5 0.5

m 2 c 2 j 1 1 0.25 0.5 0.5

n 1 ∅ 1 ∅ 0 0 1 ∅ ∅

(c) Samples from SAM and scaling.

𝐴.𝑎 F𝐵.𝑥 𝐵.𝑏 F𝐶.𝑥 𝐶.𝑐 W𝑠
𝐴

W𝑠
𝐵

W𝑠
𝐶

m 1 a 2 i 1 1 2

m 2 b 2 j 0.5 1 1

m 2 c 2 j 0.5 1 1

n 1 ∅ 1 ∅ 2 ∅ ∅

Group 1

Group 2

Group 2

Group 3

Merge

(d) Group-and-Merge Algorithm.

𝐴.𝑥 𝐴.𝑎

1 m

𝐵.𝑥 𝐵.𝑏

1 a

𝐶.𝑥 𝐶.𝑐

1 i

1 i

(e) Group 1

𝐴.𝑥 𝐴.𝑎

2 m

𝐵.𝑥 𝐵.𝑏

2 b

2 c

𝐶.𝑥 𝐶.𝑐

2 j

2 j

(f) Group 2

𝐴.𝑥 𝐴.𝑎

3 n

4 n

(g) Group 3

Figure 3: Example.

2, which indicates that the original tuple of base relation 𝐴 joined

in the full outer join is fanned out twice by both relation 𝐵 and

relation 𝐶 . Therefore, the sample weightW𝐴 = 1

2×2 = 0.25.

Theorem 1. Sampling from full outer join with weight W𝑇 for
relation 𝑇 is asymptotically unbiased.

Proof: To prove Theorem 1, we need to show that the sample

distribution asymptotically approximates the true probability distri-

bution, i.e., the expected frequency of any relation 𝑇 tuple x in the

sample approaches its occurring probability 𝑃 (x) as the sample size

approaches infinity. Inspired by [15], we first calculate the inclu-

sion probability 𝜋x of relation 𝑇 tuple x in the sample. We denote

the full outer join size by 𝑁 , the size of relation 𝑇 by 𝑁𝑇 , and the

sample size by 𝑆 . We denote the number of occurrences of tuple x
in relation 𝑇 and in the sample by 𝑁𝑇 (x) and 𝑆 (x), respectively.

𝜋x =
1

𝑁𝑇 (x)
· 𝑆 · 𝑁𝑇 (x)/W𝑇 (x)

𝑁
=

𝑆

W𝑇 (x) · 𝑁
(5)

We then prove that the expected frequency E[𝑃 (x)] approaches its
occurring probability 𝑃 (x) as 𝑆 → ∞. Note that

∑𝑆
𝑖=1𝑊𝑇 (x𝑖 ) →

𝑆 ·𝑁𝑇

𝑁
as 𝑆 → ∞.

E[𝑃 (x)] = E[𝑆 (x) ·𝑊𝑇 (x)∑𝑆
𝑖=1𝑊𝑇 (x𝑖 )

]

= E[
𝑆∑︁
𝑖=1

1x𝑖=x · W𝑇 (x𝑖 )∑𝑆
𝑖=1𝑊𝑇 (x𝑖 )

]

= E[
𝑁𝑇∑︁
𝑖=1

1x𝑖 ∈𝑆 ·
1x𝑖=x · W𝑇 (x𝑖 ) · 𝑁

𝑆 · 𝑁𝑇
]

=
1

𝑁𝑇
·
𝑁𝑇∑︁
𝑖=1

𝜋x𝑖 ·
1x𝑖=x

𝜋x𝑖
= 𝑃 (x)

(6)

HandlingNULL value in full outer join.NULL valuemay appear

in the full outer join when some of the primary key relation tuples

do not join with any foreign key relation tuple. Given a full outer

join sample with NULL values, we only derive samples for base

relations that are not NULL. Base relations that are not NULL are

indicated by a corresponding indicator column value of 1, i.e., those
relations actually participate in the join. For base relations with

NULL values, the associated fanout column values are set to 1

during weight calculation. For example, for the fourth sample in

Figure 3 (c), the indicator columns of both relation 𝐵 and 𝐶 are 0,

so we can only derive relation 𝐴 sample from it, and the weight

W𝐴 is calculated by setting both fanout columns F𝐵.𝑥 , F𝐶.𝑥 to 1.

Challenge: large join space. To generate a set of tuples equal to the

size of the base relations using inverse probability weighting, the
sample size needs to equal that of the full outer join. However, the

full outer join is usually prohibitively large for real-world databases.

For example, the size of full outer join on a simple join schema (6

tables) of the IMDB database can reach 2 · 1012. Consequently, it is
only feasible to sample a small fraction of the full outer join.

To avoid generating the full outer join and ensure that base

relations in the generated database are of their actual sizes, we

adopt a simple and effective scaling method for each base relation.

Specifically, for a base relation 𝑇 , we look up and accumulate the

values of W𝑇 of samples from SAM and obtain the cumulative

sum Wsum

𝑇
. Then, we multiply each sample weight W𝑇 with a

scaling factor of |𝑇 |/Wsum

𝑇
. Wsum

𝑇
implies the number of tuples

the full outer join samples can generate for relation𝑇 . Therefore, by

multiplying the sample weights with the scaling factor |𝑇 |/Wsum

𝑇
,

we generate exactly |𝑇 | tuples for relation 𝑇 .
Example. Again we focus on the below table in Figure 3 (c). For rela-

tion𝐴,Wsum

𝐴
= 0.5+2×0.25+1 = 2 and |𝐴| is 4. The corresponding

scaling factor is thus 2. The above table in Figure 3 (c) shows the



sample weight of relation𝐴 after scaling,W𝑠
𝐴
. The cumulative sum

ofW𝑠
𝐴
is 4, the same as |𝐴|.

After this, we can generate the tuples for each base relation 𝑇

using W𝑠
𝑇
— the number of occurrences of each tuple should be

equal to the corresponding W𝑠
𝑇
value.

The remaining issue here is that the generated tuples do not con-

tain join keys, because join key columns are not explicitly modeled

by SAM. We discuss the algorithms to generate base relations with

join keys in Section 4.3.2. For now, we present the algorithm to

generate multiple base relations (without join key) in Alg 2. The

cumulative sum of each base relation’s weight is initialized to 0

(line 2). We first uniformly sample full outer join tuples from the

AR model using the same sampling technique as Alg 1 (line 4).

Then, for each base relation, we use inverse probability weighting
to calculate the sample weight (line 6), and append the weighted

sample to the set of generated tuples (line 7). The calculated weight

is also added to the corresponding cumulative sum (line 8). After

processing all 𝑘 full outer join samples, we calculate the scale factor

for each base relation (line 10), and adjust the number of tuples for

each base relation according to the scale factor (line 11).

Algorithm 2 Generating Multiple Tables with SAM (no join key)

Input: Model predicted conditional probability distributions

{𝑃\ (𝑋𝑖 |x<𝑖 )}, sample size 𝑘

Output: Generated tables 𝑇 1, 𝑇 2, ...., 𝑇 𝑙

1: 𝑇 1,𝑇 2, ...𝑇 𝑙 = {};
2: W𝑠𝑢𝑚

𝑇1
,W𝑠𝑢𝑚

𝑇2
, ...,W𝑠𝑢𝑚

𝑇𝑙
= 0

3: for 𝑠 = 1 to 𝑘 do
4: Uniformly sample full outer join tuple z (line 3-7 of Alg 1)

5: for 𝑖 = 1 to 𝑙 do # Inverse Probability Weighting
6: W𝑇𝑖 =

1∏
𝑇 ′∈𝐹𝑎𝑛𝑜𝑢𝑡 (𝑇𝑖 )

F𝑇 ′ .key

7: Append (z[𝑇𝑖 ],W𝑇𝑖 ) to 𝑇 𝑖

8: W𝑠𝑢𝑚
𝑇𝑖

= W𝑠𝑢𝑚
𝑇𝑖

+W𝑇𝑖

9: for 𝑖 = 1 to 𝑙 do # Scaling
10: 𝑠𝑐𝑎𝑙𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 = |𝑇𝑖 |/W𝑠𝑢𝑚

𝑇𝑖

11: Scale number of tuples in 𝑇 𝑖 by 𝑠𝑐𝑎𝑙𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟

12: return 𝑇 1, 𝑇 2, ...., 𝑇 𝑙

4.3.2 Join key Assignment. Join key assignment is crucial in

order for the generated base relations to capture the inter-relation

data correlation of the original database. If we randomly assign

join keys to the base relations generated by Alg 2, they are unlikely

to recover the full outer join distribution modeled by SAM when

joined together.

In order to achieve high-fidelity on join queries, we need to

assign the right join keys to the samples during the generation pro-

cess, such that the generated base relations, when joined together,

produce full outer join result that follows the distribution modeled

by SAM. In doing so, the error of input query cardinalities on the

generated database could be minimized as well.

We could always assign values to the primary key columns se-

quentially, and thus we are left with assigning values to the for-

eign key columns. Since we can use SAM to generate an arbitrary

view (containing a subset of the base relations) with the inverse
probability weighting approach by considering the fanout columns

associated with the target view, one naive approach to join key

assignment following [4] would be to first generate the relation

containing the primary key (a.k.a., pk relation) and a view contain-

ing the pk relation and target relation (a.k.a., fk relation). Then

we could derive the foreign key for the target relation from the pk

relation and the view.

As shown in the example below, while this approach can capture

the data correlation between pairs of pk relation and fk relation, it

does not maintain the joint distribution of full outer join, i.e., the
data distribution of all attributes for each relation as well as the

data correlation across different relations.

Example. Following the example in Figure 3, assume we generate re-

lation𝐴 (Figure 4 (a)), and two views (𝐴, 𝐵) and (𝐴,𝐶) (Figure 4 (b)).
To derive the foreign key of relation B and C, for each tuple in the

views, we look up tuples in the relation A where A.a matches, and

assign the primary key value to the respective foreign key. However,

problems occur when processing the column (𝑚,𝑎) in the view of

(A, B) — both tuples in relation 𝐴 (1,𝑚) and (2,𝑚) matches. As we

do not have any clue beyond the two relation views, we can at best

randomly select a primary key value from all matched tuples in

relation𝐴. As shown in Figure 4 (c), this may end up with assigning

1 to the foreign key of all relation 𝐵 tuples, and assigning 2 to the

foreign key of all relation 𝐶 tuples, leading to an empty inner join

result. Consequently, assigning join key from views breaks inter-

relation data correlation between relation 𝐵 and 𝐶 .

𝐴.𝑥 𝐴.𝑎

1 m

2 m

3 n

4 n

(a) PK relation

𝐴.𝑎 𝐵.𝑏

m a

m b

m c

𝐴.𝑎 𝐶.𝑐

m i

m i

m j

m j

(b) 2-relation views

𝐵.𝑥 𝐵.𝑏

1 a

1 b

1 c

𝐶.𝑥 𝐶.𝑐

2 i

2 i

2 j

2 j

(c) FK relations

Figure 4: Example of assigning join keys from views.

The key reason why assigning join key from the join views

as above fails is that the views only maintain the marginal joint

distribution of the involved relations, rather than the distribution of

the full outer join. As a result, the join keys assigned independently

from each view fail to capture the joint data distribution of the

entire database.

A high-level idea to address this is to derive the join relationships

directly from the full outer join and assign join key(s) accordingly,

so that the data correlation across all columns in the database can

be maintained. Fortunately, uniform samples from the full outer

join can be easily obtained from the AR model in SAM, which

is not the case for PGM-based methods since the model of each

view (including full outer join view) only uses partial information

contained in the input query constraints, as discussed in Section 2.3.

Therefore, given samples from the full outer join, our target is then

to assign join key(s) to the samples, such that when base relations

are generated from them, the full outer join of the generated base

relations could match that of the full outer join samples.

Thus, we need to identify the full outer join tuples that share a

join key, and assign them with a unique join key. The base relation



tuples are then generated from the full outer join tuples, which

already have join keys assigned, and take on the same join key of the

full outer join tuples. The crux of the problem is then to identify full

outer join tuples sharing the same join key. The following theorem

gives hints about this.

Theorem 2. Assuming an AR model of the exact joint distribution,
full outer join tuples sharing the same join key 𝑇 .𝑝𝑘 have the same
value for all indicator columns and content columns associated with
{𝑇 }∪𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑇 ) in the join graph, as well as for all fanout columns
associated with fk relations that join with {𝑇 } ∪𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑇 ).

We can prove Theorem 2 based on the uniqueness of primary

key. We denote the set of all indicator columns and content columns

associated with {𝑇 } ∪ 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑇 ) and all fanout columns asso-

ciated with fk relations that join with {𝑇 } ∪ 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑇 ) as the
identifier columns of the join key 𝑇 .𝑝𝑘 , or 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (𝑇 .𝑝𝑘).
Example. In Figure 3 (b), relation 𝐴’s primary key 𝐴.𝑥 joins with

the foreign key 𝐵.𝑥 and 𝐶.𝑥 . As 𝐴 has no ancestor on the join

graph, the identifier columns of relation 𝐴 are all indicator columns

and content columns associated with relation 𝐴, and all fanout

columns associated with relation 𝐵 and 𝐶 , i.e., 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (𝐴.𝑥) =
{𝐴.𝑎, I𝐴, F𝐵.𝑥 , F𝐶.𝑥 }. Full outer join tuples 3 to 6 share the join key

2, and consequently they have the same values across all identifier
columns of 𝐴.𝑥 .

Theorem 2 states a necessary condition for full outer join tuples to

have the same join key. Based on this condition, we can formulate a

greedy algorithm for join key assignment, where we identify tuples

satisfying the necessary condition, greedily merge them together

and assign them with a unique join key. We call this algorithm

Group-and-Merge, as it consists of two steps. Specifically, to assign

the join key 𝑇 .𝑝𝑘 , we first group the full outer join tuples by the

identifier columns of 𝑇 .𝑝𝑘 . At the second step, as the scaled weight

of pk tableW𝑠
𝑇
for some tuples might be less than 1, we greedily

merge tuples within the same group together, keep track of the

cumulative sum of the scaled weightW𝑠
𝑇
, and assign the merged

tuples with a unique key whenever the scaled weights sum to 1, i.e.,
a new tuple for the primary key relation 𝑇 is generated.

The Group-and-Merge algorithm is presented in Alg 3. Initially

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 stores all the full outer join samples with inverse prob-
ability weighting and scaling applied (line 2). We use𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑡 to

temporarily store the merged tuple sets during the merging process

(line 3). We also maintain a counter for the pk relation 𝑇 to record

the number of primary keys assigned (line 4). To assign the join key

𝑇 .𝑝𝑘 , we group the tuples by values of the identifier columns of𝑇 .𝑝𝑘
(line 5). From our insight, we know that tuples grouped together

likely share the same 𝑇 .𝑝𝑘 , so we greedily merge tuples within

each group (line 6-17). Specifically, we use 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 to store

tuple sets that are to be merged (line 7), and𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 to track

the cumulative sum of the scaled weight W𝑠
𝑇
of the merged tuples

(line 8). With each tuple added to 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 , we increment the

weight in𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 (line 10-11). We assign the merged tuples in

𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 with a unique key when𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 reaches 1 (line

12-13), i.e., a new tuple has been generated for the pk relation𝑇 , and

they are added to𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑡𝑠 as a merged tuple set (line 14). The

counter value is also incremented by 1 to record the assigned key

(line 15). 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 and 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 are reset after assigning

a new key (line 16-17). After all samples have join keys assigned,

each base relation 𝑇𝑖 can be generated from them according to the

scaled weight W𝑠
𝑇𝑖

of the samples (line 18). Note that Alg. 3 can be

easily extended to handle multiple join keys by merging samples

in a recursive manner. Due to the page limit, we present the case

of multiple join keys in the full version.

Algorithm 3 Generating Multiple Tables with SAM (join key as-

signed using Group-and-Merge)

Input: Full outer join samplesX after applying inverse probability

weighting and scaling.

Output: Base relation tuples with join key 𝑇 .𝑝𝑘 assigned.

1: DB = {}
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 = {𝑋1, 𝑋2, ...𝑋𝑛}
3: 𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑡𝑠 = {}
4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0

5: Group 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 by values of identifier columns

𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 (𝑇 .𝑝𝑘) into {X11
,X12

...}, {X21
,X22

...}, ... ,

{X𝑘1 ,X𝑘2 ...}
6: for each group {X𝑘1 ,X𝑘2 , ...} do
7: 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 = {}
8: 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 = 0

9: for each sample X𝑘𝑖 do
10: Append X𝑘𝑖 to 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒

11: 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 = 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 +W𝑠
𝑇

12: if 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 >= 1 then
13: Assign key 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for the primary key column 𝑇 .𝑝𝑘

to all tuples in 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒

14: Append 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 to𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑡𝑠

15: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

16: 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 = {}
17: 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 = 0

18: Generate database DB from 𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑡𝑠 according to the

scaled weight W𝑠
𝑇𝑖

of the samples

19: return The generated database DB

Example. Continue with our example, after applying inverse prob-

ability weighting and scaling to the samples, we obtain each tu-

ple’s scaled weight for all base relations as shown in Figure 3 (d).

Now we can apply the Group-and-Merge algorithm to generate

the base relations while assigning join keys. We keep a counter

for relation 𝐴, and the counter value is initialized to 0. We group

the tuples by the values of the identifier columns of 𝐴.𝑥 , which are

{𝐴.𝑎, I𝐴, F𝐵.𝑥 , F𝐶.𝑥 }. Three groups are formed, the first tuple be-

longs to Group 1, the second and third tuple belong to Group 2, and

the fourth tuple belongs to Group 3. We start by processing Group

1. We add W𝑠
𝐴

= 1 to 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 and it reaches 1, indicating a

new tuple is generated for relation𝐴. We assign a new primary key

1 to the tuple, and increment the counter value by 1. Base relation

tuples generate from this sample are shown in Figure 3 (e), which

include one tuple for relation 𝐴, one tuple for relation 𝐵 and two

tuples for relation 𝐶 . All the tuples generated share the join key 1.

Moving on to Group 2, we first process the second tuple, append

it to 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 , and add W𝑠
𝐴

= 0.5 to 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚, which be-

comes 0 + 0.5 = 0.5. Then we process the third tuple, append the

tuple 𝑠𝑒𝑡_𝑡𝑜_𝑚𝑒𝑟𝑔𝑒 , and addW𝑠
𝐴
= 0.5 to𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚 to become



0.5 + 0.5 = 1, indicating another new tuple is generated for relation

𝐴. Thus the second and third tuples are merged, and we assign a

new primary key 2 to the merged set. We can then generate tuples

for all base relations from the merged set by aggregating the scaled

weights, as shown in Figure 3 (f). All the tuples generated share

the join key 2. For Group 3, we repeat the exact steps to generate

2 tuples for relation 𝐴 as show in Figure 3 (g). Note that no tuples

are generated for relation 𝐵 and 𝐶 from Group 3 because the corre-

sponding indicator column values of both relations are 0. Now all

the generated tuples together form the generated database, and it

is exactly the same as the original database.

Handling numerical columns. Numerical columns with large

domain sizes may pose a challenge to SAM. Due to the approxima-

tion error of the deep autoregressive model, we may obtain samples

that are supposed to share a join key, but have different numeri-

cal values. This prevents them from being identified and merged

together by the Group-and-Merge algorithm, leading to decreased

data fidelity. To tackle this problem, we use the intervalization tech-

nique [4] and integrate this into the deep autoregressive model.

The intervalization technique models the distribution of intervals,

i.e., value ranges, instead of distinct values for numerical columns,

which greatly reduces the domain size of numerical columns. To ap-

ply the intervalization technique, we extract all distinct constants

that appears in the predicates on a numerical column from the

training queries, and sort them in increasing order 𝑣1, 𝑣2, ..., 𝑣𝑙 . We

then define 𝑙 − 1 intervals [𝑣𝑖 , 𝑣𝑖+1) (1 ≤ 𝑖 < 𝑙), and train SAM to

learn the conditional probability of the column’s value falling in

each interval. As there are far fewer intervals compared to distinct

values, this reduces the domain size of numerical columns. In the

generation phase, we sample the interval for each numerical col-

umn from the autoregressive model, and perform Group-and-Merge
based on the intervals. After Group-and-Merge, for each generated

tuple containing numerical columns, we perform uniform random

sampling from distinct values in the interval to obtain the actual

value for the numerical columns.

5 EXPERIMENTS
We conduct comprehensive experiments to evaluate SAM 1

in com-

parison with previous methods. We evaluate the accuracy of data-

base generation methods in two aspects.

A1. Fidelity of the generated database to input cardinality con-

straints.

A2. Closeness of the generated database to the original database.

We term this aspect as database recovery.
Moreover, we also evaluate the efficiency of database generation

methods in the two aspects.

E1. Efficiency of the processing of input cardinality constraints.

E2. Efficiency of the database generation process.

5.1 Experimental Settings
Datasets.We use three real-world datasets, including two single-

relation datasets and one multi-relation dataset, in our experiments.

A brief overview of the datasets is as follows.

1. DMV [37]. This dataset consists of vehicle registration infor-

mation in New York. We follow the preprocessing strategy in

1
The source code will be released.

previous work [34, 36], and get 11.6M tuples and 11 columns

after preprocessing. The 11 columns have widely different data

types and domain sizes ranging from 2 to 2101.

2. Census [2]. This dataset was extracted from the 1994 Census

database, consisting of personal income information. It contains

48K tuples and 14 columns. The 14 columns contain a mix of

categorical columns and numerical columns with domain sizes

ranging from 2 to 123.

3. IMDB [18]. The Internet Movie Database (IMDB) is a public

database containing information related to films and television

programs. IMDB has been proved to contain relatively strong

data correlation [18] and is widely used in database research on

complex real-world data. We use the JOB-light [19] schema in

our experiments, which is a widely-used benchmark on IMDB

and has 6 joined relations. The size of full outer join is ∼ 2 · 1012.

Query Workload. For the two single-relation databases, as there

is no available real query workload on these datasets, we generate

query workloads following previous work on cardinality estima-

tion [7, 16]. Specifically, we draw the number of filters (𝑛𝑓 ) from

1 to 5 at random. We then uniformly sample 𝑛𝑓 columns and the

respective filter operators from {≤,=, ≥}. Finally, we assign the

filter literals by the values of a tuple uniformly sampled from the

datasets. We generate a query workload of 20K queries for each

database, which is orders of magnitude larger than the setting

of previous work [4]. We also generate another query workload

containing 100K queries to further show the ability of SAM to effi-

ciently process larger-scale query workloads, and evaluate the trend

of A2 (Closeness) of SAM with varying number of input queries.

For the multi-relation IMDB database, we directly use the training

queries generated by previous work on cardinality estimation [16]

as our input query workload. This query workload consists of 100k

queries and the number of joins ranges from 0 to 2. The number

of filters for each base relation is randomly drawn from 0 to the

number of columns. There are two reasons for the choice. First, it

is a large-scale query workload comprising a wide variety of both

single-relation and join queries, which mimics real-world query

workloads. Second, it has been released to the public.

Metrics. Based on the two aspects of accuracy mentioned (A1.
Fidelity and A2. Closeness), we use a number of metrics to measure

the performance of different database generation methods.

Aspect 1: Evaluation on fidelity. Our first experiment evaluates

the fidelity of the generated database, i.e., how well the generated

database satisfies the input cardinality constraints. This can be

measured by the relative cardinality errors of input queries on the

original and the generated databases. To this objective, we use Q-

Error [25] of input query cardinalities as our metric, which is a

popular metric for cardinality estimation [16, 34, 36]. Note that

due to the scale of the IMDB training query workload (100K), it is

impractical to evaluate the generated database on all input query

constraints. Therefore, we evaluate the generated database on a

random sample of 1, 000 input query constraints for IMDB.

Aspect 2: Evaluation on Closeness to the original database.
Second, we evaluate how close the generated database is to the

original database in terms of data distribution. Two metrics are

used in this experiment: 1) cross entropy with regard to the original

database; 2) Q-Error on an independent test query set.



As discussed in Section 2.2, cross entropy directly measures the

closeness between the data distribution of the generated database

and the original database. We calculate the cross entropy in bits

between the relation(s) in the original database and the relation(s)

in the generated database. Smaller cross entropy indicates that the

generated database is statistically closer to the original database.

For IMDB database, we measure the cross entropy of the primary

key relation — Title.

Apart from measuring the cross entropy, we can measure the

closeness to the original database by measuring the Q-Error on an

independent test query set. Unlike the Q-Error on the input query

workload, which measures how well the input query cardinalities

are satisfied, Q-Error on an independent test query test measures

howwell the generated database recovers the joint data distribution

and generalizes to unseen queries.

As our method serves the use cases of benchmarking and stress

testing, we also evaluate how the query execution latency differs be-

tween the generated database and the original database. Therefore,

following [21] we measure the performance deviation of an inde-

pendent test workload for each synthetic database. Performance

deviation is defined as the difference in query latency between the

synthetic database and the original database. For all three datasets,

we evaluate the query latency of an independent test workload on

the original database and the synthetic databases using the open

source DBMS PostgreSQL 12.0. We then calculate the performance

deviation for each synthetic database.

On single relation databases, the test query workloads are ran-

domly generated with the same procedure as the input query work-

loads but are ensured to have no duplicate query. For IMDB, we use

the 70 queries in the JOB-light benchmark as our independent test

query set. While MSCN training queries only contain joins of up to

three relations, JOB-light contains a variety of join queries involv-

ing up to five relations. Therefore, JOB-light queries can especially

help evaluate how well the joint distribution of all relations are

captured by different methods.

Baseline Methods. We implement the PGM-based method in pre-

vious work [4], specifically the chordal graph-based method, as

the baseline method. As discussed, PGM [4] is the only compara-

ble method for database generation that shares the same problem

settings with our work.

Evaluation Protocols.We feed a query workload into different

methods. After processing the query workload, we generate the

database using these methods. We then execute the input queries on

the generated database and measure the metrics of different aspects

discussed above. All the experiments were run on a machine with

a Tesla V100 GPU and a 20-core E5-2698 v4 @ 2.20GHz CPU.

Notably, as PGM has a high time complexity with regard to the

size of the query workload, it can only process a very small number

of query constraints within a reasonable time frame, which we

discuss in detail in Section 5.2. Considering the huge discrepancy in

processing efficiency between different methods, we fix the process-

ing time instead of input query size for our evaluation on database

recovery (Section 5.4), i.e., we use different methods to process as

many queries as possible within a fixed time frame (12 hours for

single relation databases and 48 hours for IMDB). Under the fixed

time frame, PGM can process 12, 7 and 400 queries for Census,

DMV and IMDB, respectively.

To fairly compare SAM’s performance of generated data fidelity

with the previous method (Section 5.3), we need to evaluate the

methods on the same set of input query constraints. In this case,

we evaluate the performance of both SAM and PGM on the small

input query workload which PGM can fully process within the

fixed time frame. The results are shown in Table 2 and Table 4.

However, we note that such a small size of query workload can

hardly help recover the database, and real-world query workloads

usually contains a much larger number of queries. Therefore, results

in Table 2 and Table 4 are presented just for fairness of comparison.

5.2 How Fast is SAM in processing Query
Workloads?

To evaluate the efficiency of compared methods, we first study the

query workload processing time. Processing time refers to the time

it takes for a method to model the data distribution from the given

input cardinality constraints.
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Figure 5: Processing time.

Figure 5 shows the log-log plot of the processing time of SAM and

PGM against the number of input queries on the single-relation

database Census and themulti-relation database IMDB, respectively.

Note that since the result on DMV demonstrates the same trend

as that on Census, we do not report it due to the space limit. We

observe that the processing time scales as a high-degree polynomial
for PGM and linearly for SAM. We observe that PGM can only

process very few cardinality constraints within a reasonable time

frame, as it takes more than 12 hours to process 13 queries on

Census and more than 48 hours to process 410 queries on IMDB
2
,

and a small increase in the query workload size leads to a huge

increase in the processing time. On the contrary, SAM can process

the full set of input cardinality constraints well within 12 hours

on Census (20K) and 48 hours on IMDB (100K). Moreover, note

that the average number of filters of the input queries on the two

single-relation databases is 2.5. If we increase the average number

of filters, PGM would become even more inefficient. Therefore,
SAM is orders of magnitude more efficient than the baseline
method in processing query workloads, and only SAM can
scale to large-scale query workloads.

5.3 How do the Methods Compare in Fidelity?
Table 1∼Table 2 and Table 3∼Table 4 show the experimental results

of different data generation methods in terms of Fidelity on single-

and multi-relation databases, respectively. We first highlight the

2
Since input queries are assigned to different PGM models according to the joined

tables on IMDB, the number of processed queries on IMDB is larger than that on

Census, but still account for a very small fraction of the input queries.



Model Census DMV

Median 75th 90th Mean Median 75th 90th Mean

SAM 1.27 1.65 2.50 1.80 1.15 1.48 2.28 2.10

Table 1: Q-Error of input queries - full scale

Model Census (12 queries) DMV (7 queries)

Median 75th 90th Mean Median 75th 90th Mean

PGM 1.05 1.65 6.99 2.61 1.00 1.04 1.06 1.02

SAM 1.32 1.56 1.63 1.84 2.81 8.41 15.69 5.97

Table 2: Q-Error of very few input queries

Model Median 75th 90th Mean Max

SAM w/o Group-and-Merge 2.00 4.68 26.00 2602 2 · 106

SAM 1.57 2.61 5.74 14.85 3142

Table 3: Q-Error of input queries on IMDB - full scale

Model Median 75th 90th Mean Max

PGM 1.55 149.5 6202 1 · 105 1 · 107

SAM w/o Group-and-Merge 1.98 5.24 24.34 2 · 104 4 · 106

SAM 1.77 3.58 8.60 17.97 5040

Table 4: Q-Error of 400 input queries on IMDB

main takeaway from the results — SAM enjoys a significantly
better trade-off between accuracy and scalability compared to
the baseline method. Below we analyze the detailed experimental

results and conclude several major findings from the results.

(F1) SAM achieves great performance in terms of data fidelity
on large query workloads on all databases. Table 1 and Table 3

show the Q-Error of input query cardinality on large query work-

loads on single- and multi-relation database, respectively. Note that

PGM cannot work on such workloads. From the results, we observe

that SAM performs extremely well on single-relation databases,

achieves single-digit error across all percentiles on Census and

DMV dataset. SAM performs well on IMDB dataset too, which con-

tains join queries in the query workload. With theGroup-and-Merge
algorithm for join key assignment, SAM’s performance improves

significantly at the tail, achieving 500× less Max error compared to

the model without Group-and-Merge. SAM’s performance is mainly

attributed to its accurate modeling of the joint data distribution

without making compromising independence assumptions, as well

as the properly assigned join keys.

(F2) SAM has comparable performance with PGM in terms
of data fidelity on very small query workloads on single-
relation databases . As PGM can complete in reasonable time

only if the workload is very small, to compare with PGM, we use

workload with several queries only. As shown in Table 2, on a

small query workload, both SAM and PGM are able to achieve

relatively small Q-Error of input query cardinality. In other words,

both methods generate a single-relation database well satisfying

the input cardinality constraints. SAM outperforms PGM in terms

of 75th, 90th and Mean error on the Census dataset, while PGM
outperforms SAM on the DMV dataset. This is because given a very

small number of cardinality constraints, PGM derives a near-exact

solution by solving the system of linear equations, achieving high fi-

delity. Meanwhile, SAM uses the AR model to learn an approximate

solution. The approximate solution can incur more error compared

to the solution of PGM, but most of the time its performance is on

par with that of PGM.

(F3) SAM significantly outperforms PGM on small query
workload on multi-relation databases. From Table 4, we ob-

serve that SAM outperforms PGM for all percentiles except median

when measuring the Q-Error of the small query workload for the

IMDB dataset, which contains join queries. SAM performs par-

ticularly well for the larger percentiles, i.e., 75th, 90th and Max,

achieving 40×, 700×, 2, 000× less error respectively. As SAM uses

an AR model to learn the joint data distribution of the full outer

join from all input query constraints, and uses the Group-and-Merge
algorithm to ensure generated base relations recover the full outer

join, it leads to a generated database that recover the joint distribu-

tion of the full outer join to the greatest extent. On the contrary,

PGM independently generates different views satisfying disjoint

sets of input query constraints, leading to inconsistencies across

the generated views and huge error at the tail percentiles. PGM
performs slightly better than SAM in terms of the median, as it

obtains a near-exact solution for a portion of the queries, but this is

at the cost of incurring much larger error for the rest of the queries.

5.4 How do the Methods Compare in Database
Recovery?

Table 5∼Table 9 show the experimental results of different data

generation methods in terms of database recovery. We summarize

the main takeaway from the results in advance — SAM generates
databases that are closer to the original databases compared
to PGM. We conclude three major findings as follows.

(F4) SAM can well generalize to unseen queries while PGM
cannot. From Table 5 and Table 6, we observe that SAM outper-

forms PGM across the board in terms of Q-Error on test query car-

dinality. On single-relation databases, SAM achieves significantly

smaller error, with 500× less Mean error on Census and 100, 000×
less Mean error on DMV; on IMDB, SAM achieves at least two

orders of magnitude smaller error at all percentiles. This is due

to SAM’s ability to process large-scale query workloads, and to

capture much more information on the joint data distribution of

the original database. Under a reasonable time limit, PGM can only

process a very small number of training queries as discussed. As

a consequence, this would greatly limit its ability to derive the

underlying data distribution from the query workload.

(F5) The data distribution of the databases generated by SAM is
closer to that of the original databases, compared to baseline
methods. As shown in Table 7, across all three datasets, the rela-

tions generated by SAM achieve smaller cross entropy with regard

to the original database relations. As SAM processes a much larger

number of query constraints, it learns much more information on

the joint data distribution, which SAM uses to generate a database

that is closer to the original database.

(F6) Query latency of the databases generated by SAM ismuch
closer to that of the original databases compared to base-
line methods. From Table 8, we observe that for single-relation

databases, SAM generates databases with smaller performance de-

viation of test queries compared to PGM, achieving at least 4×



Model Census DMV

Median 75th 90th Mean Median 75th 90th Mean

PGM 46.00 872.0 3461 1097 646.0 1 · 105 1 · 106 4 · 105

SAM 1.31 1.76 2.70 1.97 1.16 1.54 3.11 4.05

Table 5: Q-Error of test queries

Model Median 75th 90th Mean Max

PGM 232.7 6 · 104 1 · 106 9 · 105 3 · 107

SAM w/o Group-and-Merge 38.67 1 · 105 3 · 106 5 · 106 3 · 108

SAM 2.29 5.39 27.78 2776 2 · 105

Table 6: Q-Error of JOB-light queries on IMDB

Model Census DMV IMDB

PGM 29.37 39.49 12.45

SAM 28.68 23.22 6.14

Table 7: Cross entropy of the generated relation

smaller performance deviation at all percentiles on Census. Table

9 shows that SAM’s performance gain over baseline is even more

significant on IMDB dataset. When measuring the performance

deviation of a join query workload, i.e., JOB-light, SAM achieves

20×, 80× and 40× smaller performance deviation at median, 75th

and 90th percentile respectively. Due to the large performance de-

viation, previous database generators like PGM can hardly serve

the use case of benchmarking and stress testing. In contrast, SAM
is an ideal choice for those use cases.

Model Census DMV

Median 75th 90th Mean Median 75th 90th Mean

PGM 1.38 2.67 3.86 1.81 145.2 610.0 798.4 311.4

SAM 0.26 0.54 1.05 0.43 103.0 339.7 630.0 221.8

Table 8: Performance deviation of test queries (millisecond)

Model Median 75th 90th Mean Max

PGM 19.20 373.9 2637 1565 3 · 104

SAM 0.89 4.86 65.75 121.0 5730

Table 9: Performance deviation of JOB-light queries (second)

5.5 Does the Group-and-Merge Algorithm help
SAM for Join Key Assignment?

From Table 3, Table 4 and Table 6, we see that without the Group-
and-Merge algorithm, the performance of SAM degrades in terms

of both data fidelity and database recovery. The degradation in

Q-Error is especially noticeable at the larger percentiles. This is be-

cause SAM w/o Group-and-Merge performs poorly on join queries

involving three or more tables, as the join key assignment process

only maintains the data correlation between pairs of primary key

relation and foreign key relation. As a result, the generated base

relations no longer recover the full outer join distribution learned

by the model. Being able to take into account the joint distribu-

tion, Group-and-Merge helps assign join keys which recover the

full outer join of the original database.

5.6 How Fast is SAM in Database Generation?
We then investigate the generation time of SAM, which refers to

to the time it takes to sample from the model and perform the

necessary post-processing steps to generate a synthetic database,

e.g., join key assignment.

Single-relation databases. The generation time of SAM on single-

relation databases is very fast due to the batched computing on

GPUs. In our experiments, on a GPU, SAM can generate the full

database in seconds (1.2s) for Census and minutes (2.7mins) for

DMV. The generation process can be even faster by using multiple

GPUs. On the contrary, PGM requires 19 seconds and 0.9 hour

to generate the Census and DMV database respectively using our

single-threaded implementation on CPU, which is an order of mag-

nitude slower. Although the generation process of PGM can also

be accelerated through multi-threading or possibly a GPU imple-

mentation, significantly more work is required and it is unlikely to

be faster than that of SAM.

Multi-relation databases. The generation time of SAM on multi-

relation databases depends on the number of full outer join tuples

it samples from the AR model. Figure 6 shows the plot of the gener-

ation time against the number of full outer join tuples sampled, as

well as the median Q-Error of input query cardinalities. We observe

that generation time scales linearly with regard to the number of

full outer join tuples, while the median Q-Error plateaus after sam-

pling around 120 million tuples. Thus, a high fidelity database can

be generated with only 120 million samples for IMDB, which are

only roughly 1/20, 000 of the full outer join size. The time it takes

for SAM to sample and process 120 millions tuples is around 1.2

hour, which is faster than the time it takes for PGM to generate the

database (2.8 hour).
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Figure 6: Generation time of SAM and the corresponding
Q-Error on IMDB with varying sample sizes.

5.7 How Does the Performance of Database
Recovery Scale with Query Workload Size?

SAM can scale to large-scale query workloads because its com-

plexity is linear in the number of input cardinality constraints.

Therefore, one interesting problem is whether the performance of

SAM in database recovery improve with a larger query workload

size. To answer this, we evaluate the cross entropy and Q-Error of

test query cardinality with varying workload size (or the number

of input cardinality constraints) from 20k to 100K. Note that all

SAM trials finish training in the fixed time frame. As the results

on other databases have the similar trend, we show the results on

Census in Figure 7 due to the page limit. From the results, we can

conclude two findings. First, a larger number of input cardinality



constraints can provide more information on the underlying data

distribution. Second, SAM can efficiently and effectively learn from

the larger query workloads to recover the original database.
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Figure 7: Performance of database recovery with varying
workload size on Census.

5.8 How Does Workload Coverage impact the
Performance of Database Recovery?

Ideally, SAM can recover the distribution of the original database

if the query workload covers the entire data space. SAM’s perfor-

mance of database recovery may degrade when the query workload

only covers a subspace of data. We study the impact of workload

coverage on the performance of database recovery. We first synthe-

size equal-sized training workloads with different coverage ratio,

i.e. the ratio between the size of the range covered by the query

workload and the domain size of each column. We then generate

a synthetic database from each workload and evaluate the perfor-

mance of database recovery. The experiments are conducted on

Census dataset.

From the results in Figure 8, we observe that as the coverage ratio

increases, both the cross entropy of the generated databases and

the mean Q-Error of the test query workload decreases. This shows

that incomplete query coverage does have a negative impact on

SAM’s performance of database recovery. The lower the coverage

ratio, the more degrading in the performance of database recovery.
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Figure 8: Performance of database recovery with varying
workload coverage ratio on Census.

6 RELATEDWORK
Database Generation from Queries. A number of works have

studied the problem of database generation from queries [4, 5, 21–

23]. QAGen [5] and MyBenchmark[23] proposed methods to gen-

erate database(s) satisfying the cardinality constraints of a parame-

terized query plan template for database testing. Touchstone [21]

improved on the scalability of previous methods and proposed a

parallel framework to generate large-scale databases. However, as

these methods generate both the database(s) and the corresponding

parameters, data characteristics cannot be specified through the

queries, which limits the application of the methods to the prob-

lems of database benchmarking and stress testing. The Database

Generation Problem was first defined in [4], and the PGM-based

approaches were proposed for the problem, which we discussed in

Section 2.3. One key difference between our work and [4] is that

we are able to handle large-scale query workloads while PGM can

only handle query workloads with very small number of queries as

shown in our experiments, and our method can recover the data

distribution of the original database by processing a large-scale

query workload.

Database Generation from Data. The problem of database gener-

ation from data, or relational data synthesis, traces back to privacy-
preserving data publishing [3, 6, 10, 20], which solves the problem

of sharing data utility in a way that preserves sensitive and private

information. With the advances in deep learning, a recent trend is

to apply generative adversarial networks (GAN) to relational data

synthesis [8, 11, 28, 30]. Our work differs from work on relational

data synthesis as we assume no access to the database instance.

Moreover, relational data synthesis usually focus on generating a

single relation, while our work extends to the case of generating a

full database comprising multiple relations.

Cardinality Estimation. This work is related to cardinality es-

timation [9]. First, we share the same input (a set of queries with

cardinalities) with query-driven cardinality estimation [16, 26, 33].

However, its goal is to build a model to predict the cardinalities of

incoming queries by learning from the observed queries, and thus

most of the query-driven cardinality estimators are discriminative
since they do not directly model the underlying data distribution.

Consequently, we cannot sample data from these models, and thus

they are not suitable for our work. The construction of SAM is

based on UAE-Q [34]. Note that UAE-Q does not support database

generation. Second, data-driven cardinality estimators [14, 35, 36]

are constructed from the underlying data. This is different from our

input settings.

7 CONCLUSION
This work considers the practical problem of generating a database

from query workloads, such that the generated database resembles

the original database in terms of data distribution. We propose

SAM , which uses an AR model to learn the joint distribution of the

full outer join from cardinality constraints through differentiable

progressive sampling. SAM generates unbiased samples for base

relations from the AR model through inverse probability weighting
and scaling. We also devise the Group-and-Merge algorithm for join

key assignment, so that the generated base relations can better

recover the full outer join. Extensive experiments on real-world

datasets demonstrate the superior performance of SAM in terms of

generated data fidelity to input query constraints, closeness to the

original database, and processing as well as generation efficiency

compared to previous methods.

Avenues for future research include more effective algorithms

for join key assignment. It is also interesting to study possible

improvements to the differentiable progressive sampling algorithm.
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